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Abstract Digital methods for process design, monitoring, and control can convert
classical trial-and-error bioprocess development to a quantitative engineering
approach. By interconnecting hardware, software, data, and humans currently
untapped process optimization potential can be accessed. The key component within
such a framework is a digital twin interacting with its physical process counterpart.
In this chapter, we show how digital twin guided process development can be
applied on an exemplary microbial cultivation process. The usage of digital twins
is described along a typical process development cycle, ranging from early strain
characterization to real-time control applications. Along an illustrative case study on
microbial upstream bioprocessing, we emphasize that digital twins can integrate
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entire process development cycles if the digital twin itself and the underlying models
are continuously adapted to newly available data. Therefore, the digital twin can be
regarded as a powerful knowledge management tool and a decision support system
for efficient process development. Its full potential can be deployed in a real-time
environment where targeted control actions can further improve process
performance.
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1 Introduction

Digital transformation gives analog devices and manual work a digital footprint.
Spanning from the supply chain through the manufacturing process to the final
products this digital footprint offers a wide range of initiatives toward a more
competitive, flexible, and sustainable industry. Nevertheless, this transformation to
computer-integrated manufacturing is only crowned with success when the symbi-
osis between hardware devices, software algorithms, and humans is highly

P. Sinner et al.



intensified. An essential step hereby is a virtual or digital representation of the
physical asset, the so-called Digital Twin [1].

In terms of manufacturing the digital twin consists of a virtual representation of a
production system, which is synchronized with all process-relevant data sources of
the real system and able to run simulations, predictions, optimizations, and other
actions based on different mathematical models and algorithms. This integration and
synchronization with the real system and its specific application turns digital objects
(a process model with manual data flow) into a digital twin [1]. Based on the current
wave of digitalization, entire socio-technical structures are changed by transforming
decision-making on various levels and creating new business models. Hereby,
digital innovation is characterized by the re-programmable nature of digital objects,
the homogenization of different data sources as well as positive network externalities
[2]. Considering examples such as Amazon [3], digitalization can be regarded as a
“disruptive technology” [4]. As digital objects are more and more evolving to fully
integrated digital twins [5, 6], digitalization already substantially impacts and has the
potential to further transform manufacturing as well.

Applications of digital twins in the field of manufacturing can be beneficial
throughout the whole process development chain, see Fig. 1. During early process
development simple mechanistic models [7] can be used for data evaluation and to
plan first experimental designs including potential critical process parameters
[8, 9]. New process knowledge can then be added to the basic model by either
data-driven or if possible mechanistic terms. After testing and including all poten-
tially influencing parameters into the model, the model can be seen as an digital twin
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and used for experimental design [8], process optimization [9] and thereafter for
process monitoring [10, 11] and control on the running process [12, 13]. By using
the digital twin throughout the process development chain, development times and
costs can be reduced by replacing trial-and-error approaches by targeted in silico
optimized experiments. Design space identification can contribute to a more com-
prehensive understanding of constraints in complex process systems. Additional,
capacity potential can be quantified and harnessed, leading to higher process effi-
ciencies. Aforementioned monitoring and control applications enable agile produc-
tion practices as well as improved reproducibility and process reliability by an
efficient response to process deviations. Especially for industries, facing increasing
competitive pressure, e.g. in the fields of biosimilar manufacturing or biorefining,
digital twin based methods are essential to ensure optimal operation of plants and
thereby increasing their profitability.

Based on an exemplary upstream bioprocess this Chapter will elucidate some
application examples of a digital twin throughout a typical process development
cycle. As indicated in Fig. 1 the review includes digital twin usage for early strain
and process characterization (Sect. 2), process design (Sect. 3), process transfer
(Sect. 4), monitoring (Sect. 5.1), and control (Sect. 5.2) as well as maintenance
and continuous improvement (Sect. 4).

2 Identification of Strain and Process Characteristics

Bioprocess engineers turn exciting discoveries into products and industrial pro-
cesses. During early strain screening promising candidates are extracted toward
maximum product titers and efficient utilization of specific substrates. Based on
lab-automation [14, 15], miniaturization [16], and high parallelization [17, 18], a
high number of strain variants can be generated and screened. Although these
advances lead to a tremendous speed-up in strain engineering and selection pro-
cesses, there is still minor quantitative knowledge on the selected strains, except its
potentially advantageous behavior compared to the other candidates. Based on these
simple preliminary screening experiments first important strain and process charac-
teristics can be extracted and used for a more process-centered strain selection [9].

During digital twin development engineers can rely on an extensive repertoire of
model classes. One of the most common classification schemes groups the process
models regarding their extent of knowledge of the underlying mechanisms (“white,”
“grey,” and “black box” models) [19]. Mechanistic models (“white box”) are based
on the conservation of mass, energy, and momentum complemented by constitutive
relations (e.g., reaction rate expressions). The establishment of mechanistic models
requires a detailed prior knowledge of the underlying process phenomena and is in
contrast to the development of data-driven models (“black box”) often exhausting
and time-consuming [20]. The validity range of data-driven models lies only in the
immediate neighborhood of the collected data and therefore lacks in extrapolation
capabilities [21]. This is the core issue of data-driven models regarding their
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applicability in bioprocess industry, where the information collected during a pro-
cess is very scarce. These drawbacks can be partly overcome by a model class with
increasing popularity, the so-called hybrid semi-parametric models (“gray
box”) [20].

Starting with some basic knowledge and hypotheses on the examined organism, it
is possible to draft a first reaction scheme. Unstructured schemes, assuming a
simplified metabolism, represent a good starting point as they only need the quan-
tification of main reactants such as glucose, biomass, and product. The preliminary
data is hereby scanned to detect biological phenomena, such as limitation, saturation,
and inhibition [22]. At the cost of higher model complexity, structured schemes can
be applied to additionally account for intracellular effects that can be relevant for
strain characterization, see also Sect. 4. To achieve this, database information on
metabolic networks [23, 24] and experimental omics data need to be available and
integrated [25]. Further advances in high throughput omics analysis are critical to
successfully include systems biology approaches into digital twin based strain
characterization and design in the future [26, 27]. In the case study presented in
this section, we focus on simple phenotype screening experiments readily accessible
in any microbiology laboratory and show how such preliminary data can be viably
used for model-based methods.

Within Fig. 2 a preliminary data set of a microbial strain growing on different
substrates is given. Hereby, three shake flask experiments with two different carbon
sources (S1 and S2) were conducted and biomass and residual sugar concentrations
were measured. The poorly time-resolved information (only 5 measurement points)
hinders data evaluation such as direct calculation of growth and conversion coeffi-
cients as well as smoothing and data-driven analysis. A visual inspection leads to the
following hypothesized reaction scheme:

S1 !qS1 X

S2 !qS2 X

The organism can grow on both substrates with the specific rates qS1 and qS2 but
prefers S1, which can be seen in the experiment where both sugars are present. For
the two experiments with the single sugars it can be seen that S1 is consumed faster
than S2. This hypothesized reaction scheme can be transformed to a set of ordinary
differential equations (ODEs) shown in Eq. 1, which describes the mass balances of
main components of biological systems including nonlinear and interacting reaction
kinetics. In contrast to data-driven models, which aim to describe input–output
correlations by transforming multidimensional input data sets to obtain maximal
output accuracy, mechanistic models aim to describe the causal relationships within
the process. Therefore, in addition to give reliable results, these models are an
excellent and condensed summary of process knowledge.
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dcX
dt

¼ μcX

dcS1
dt

¼ �qS1cX

dcS2
dt

¼ �qS2cX

ð1Þ

The ODE system describes the changes in concentrations of biomass (cX), S1
(cS1) and S2 (cS2) over time in a batch reactor (shake flask in our case). The specific
growth rate μ is a superposition of the two specific consumption rates and is coupled
to these via the yield coefficients YX/S1 and YX/S2.
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Fig. 2 Shake flask experiments of recombinant C. glutamicum on CGXII medium supplemented
with a sugar mixture. Relative representations of biomass (X) and two carbon substrate concentra-
tions (S1 and S2) are shown. Based on a simple kinetic model the data can be evaluated and strain
characteristics, displayed in Table 1, can be deduced
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μ ¼ qS1YX=S1 þ qS2YX=S2 ð2Þ

Monod kinetics for both specific substrate uptake rates were chosen

qS1 ¼ qS1,max
cS1

cS1 þ KS1
ð3Þ

qS2 ¼ qS2,max
cS2

cS2 þ KS2,app
ð4Þ

with the maximum specific substrate uptake rate qS1, max and the affinity constant KS1

for S1 and analogously with qS2, max and KS2, app for S2.
In the first shake flask experiment with both sugars available, it was observed that

S2 was nearly not taken up until S1 was fully consumed. Therefore, it was hypoth-
esized that a competitive inhibition must occur (Eq. 5). This is a good example for
the flexibility of mechanistic models. When new insights are gained into the process
this model type can be extended at will. To account for the inhibition effect an
additional term for the saturation constant was incorporated into the consumption
kinetic of S2. In the presence of S1 the saturation constant KS2, app (KS2 >> KS1) is
linearly increased.

KS2,app ¼ KS2 þ KS2

KS1
cS1 ð5Þ

The hypothesized model can be tested on the available shake flask data, by fitting
the model to the data as described in [7]. Hereby, the model parameters given in
Table 1 are changed to minimize the residuals between model simulations and
measurements. Although the shake flasks can be evaluated individually, their results
are biased by erroneous measurements and incomplete data. Therefore, it is prefer-
able to simultaneously fit the three data sets, which results in the final parameters
with their associated errors, which are displayed in Table 1.

In order to assess model quality, goodness of fit as well as parametric uncertainty
are determined and compared to predefined acceptance criteria. The acceptance
criteria are dependent on the targeted application of the model and on the importance
of the modeled states. Evaluation of model quality is necessary to choose the
appropriate model, e.g. out of a library of various model structures, and to decide
if additional experimental data is required. Goodness of fit measures such as the root-

Table 1 Identified model parameters from a simultaneous fit with their uncertainties, calculated by
the inverse of the overall Fisher information further described in [7]

Parameter Value Unit Rel. Error in %

qS1, max 0.24 g/ (gh) 0.53

YX/S1 0.58 g/g 3.1

qS2, max 0.21 g/ (gh) 0.52

YX/S2 0.57 g/g 4.1
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mean-square error (RMSE) or the normalized root-mean-square error (NRMSE) are
commonly used. Parametric uncertainty can be derived from the inverse of the Fisher
information matrix [7] and stated as relative parameter error in %, also referred to as
coefficient of variation (CV). An NRMSE below 15% for the targeted states and
parametric uncertainty below 40% [28, 29] are defined as acceptance criteria in this
case study. Overall, the hypothesized model describing the growth on two substrates
matches well with the underlying shake flask data sets (NRMSE below 5.1%, 6.5%,
14.1% for biomass, S1, and S2 states, respectively) and the resulting parameters of
maximum uptake rates and yield coefficients show reliable values with low errors
(CV below 5%). This first, identified model builds a solid basis for further usage in
process development.

Already at the stage of early process development and strain characterization,
when little data availability hampers the usage of statistical evaluation procedures
and the direct calculation of conclusive strain characteristics, mechanistic mass
balance description can be of great value. Different hypotheses can be tested and
valuable information can be retrieved by a simultaneous evaluation of all available
data sets, although they are subject to measurement errors and have a poor temporal
resolution.

3 Model-Based Process Design

To facilitate the determination of the process design space, an in silico investigation
of the system behavior based on preliminary models can complement classical
Design of Experiment (DoE) approaches [30]. DoE approaches enable to describe
the design space with a reduced number of experiments, but a DoE is of very limited
information if the included factors and their selected levels are not appropriate
[31]. Because of their extrapolation capabilities mechanistic models are indispens-
able for in silico investigation of process performance [21].

As displayed in Fig. 3 the design space can be seen as the overlaying region
between technical and biological possibilities leading to the required product and
process outcome. Based on the relatively simple process models, as presented in

Product & Process
requirements

Technically feasible
space

Biologically
feasible space

Fig. 3 Schematic process
design space presented as
the overlaying regions
between biological and
technical constraints and the
process and product
requirements
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Sect. 2, the identified biological behavior can be combined with technical constraints
and analyzed, without the need of any experiment. This digital exploration is of great
value in process development and enables to conduct a suitable DoE including the
most influential factors and correct deflection levels. Besides that, potential biolog-
ical and technical bottlenecks can be identified.

For the exemplary microbial strain it could be required to design a process to
convert a sugar stream, containing substrate 1 and substrate 2 with a fixed relation
(cS2, in � 3 � cS1, in), into biomass. The process aims to convert the sugars efficiently
to biomass in a continuous manner, which can be expressed as an objective
J normalized between �1 (maximal biomass formation rate) and 1 (no sugar
consumed).

J ¼ �D � cX þ cS1 þ cS2 ð6Þ

To the batch model given in Eq. 1 an input feed Fin with substrate concentration
c_Si,in is added as well as the dilution rate D defined as Fin

V to enable the simulation
of continuous cultures. To additionally include the oxygen transfer as a technical
constraint the model can be extended by the dissolved oxygen concentration cO2 by
including the reactor specific oxygen transfer (kLa ¼ 300 h�1), the oxygen solubility
(c�O2

¼ 0:2088mmol=L), and the oxygen to biomass conversion coefficient (YO2=X),
determined by elemental balance assuming purely oxidative growth.

dcX
dt

¼ μ� Dð ÞcX
dcS1
dt

¼ �qS1 cX þ D cS1,in � cS1ð Þ
dcS2
dt

¼ �qS2 cX þ D cS2,in � cS2ð Þ
dcO2

dt
¼ �μYO2=X þ kLa c�O2

� cO2

� �

ð7Þ

The identified substrate uptake kinetics given in Eqs. 3 and 4 were extended by an
additional Monod term to include oxygen as a limiting component, with an affinity
constant KO2 .

qS ¼ f cSð Þ cO2

cO2 þ KO2

ð8Þ

Based on this set of differential equations, model simulations of continuous
processes (CSTR) with different dilution rates and sugar concentrations in the inflow
can be calculated and the respective objective function can be evaluated. Within
Fig. 4 the resulting digital design space of the given process system is displayed. For
combinations of dilution rates from 0.03 to 0.1 h�1 and feed concentrations from
50 to 100% best performing processes can be identified. The theoretical optimum
(minimum) is reached with a dilution rate of 0.031 h�1 and a feed concentration of
100%.

Usage of Digital Twins Along a Typical Process Development Cycle



By local parametric sensitivity analysis a deeper insight on the predicted optimum
can be gained. The local model sensitivities were calculated according to the
procedure described in [7] and the overall impact of model parameters on the three
main outputs, biomass (cX) and substrates (cS1 and cS2), is displayed as the relative
root-mean-square error (msqr) in Fig. 4. The sensitivity analysis reveals that at the
optimal operating point the process is mostly influenced by the maximum uptake rate
of S2 (qS2) and the reactor specific maximum volumetric oxygen mass transfer
coefficient (kLa). To further improve the process performance, higher oxygen trans-
fer of the reactor as well as strain variants with a better uptake of S2 would be
necessary.

Fig. 4 Top: Digital process
design space in function of
dilution rate and feed
concentration including
biological growth behavior
and technical limitations to
obtain best performing
processes
Bottom: Relative parameter
senstitvities evaluated at the
indicated optimum to reveal
potential bottlenecks
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To foresee the stability of the optimal operation point as well as to analyze the
robustness of the analyzed process, Monte Carlo simulations are of great value
[32, 33]. Hereby, simulations are repeated by disturbing the model parameters within
their expected error range [34], given in Table 1. As displayed in Fig. 5 we can see
that the relatively small parameter errors (below 5%) show a significant impact on
the different outputs. The colored lines indicate the original output and the disturbed
outputs out of 200 simulations are given in grey. Whereas S1 is only slightly effected
by the perturbations and reaches limiting concentrations in all simulations, the
biomass and S2 concentrations are highly affected. This indicates that the real
process can possibly reach biomass concentrations between 80 and 110 g/L and S2
concentrations in the outflow between 0 and 30 g/L.

Although the main process outcomes are highly uncertain, the process reached
steady state conditions in every simulation. Therefore the determined optimum can
be considered as a feasible operating point. Besides that, it is notable that the process
is subject to a very long startup phase of approx. 200 h until steady state conditions
are reached. Based on model simulations of other similarly performing operating
points and startup conditions the startup phase can be possibly reduced or at least be
foreseen for a potential process. Further insights into the system response and
stability can be derived by model analysis methods, using the eigenvalues of the
Jacobian matrix [35].

4 Process Transfer and Model Lifecycle Management

An initial digital twin was developed in Sect. 2 and applied for the (digital) design of
a CSTR operation in Sect. 3. In order to transfer initial screening experiments to the
actual bioreactor conditions, targeted experiments need to be performed. New data
sets generated during process transfer are continuously integrated throughout the

Fig. 5 Uncertainty analysis
of a continuous process at its
optimum operating point.
The colored lines indicate
the original output and the
disturbed outputs out of
200 simulations are shown
as gray lines. Gaussian
sampling from the
parameter errors given in
Table 1 was conducted
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concomitant life cycling of the digital twin and the corresponding process under
development. Therefore, model lifecycle management is needed to update the digital
twin as outlined in Fig. 6.

A dynamic model is a valuable tool to plan experiments during process develop-
ment. As described in Sect. 3 the design space describing key performance param-
eters of the target process, e.g. space-time yields, can be assessed by model-based
methods. Based on an identified design space operational conditions can be selected
to approach the actual experimental optimum in a targeted way [36, 37].

Albeit only initial knowledge about the system might be available at an early
stage, promising operational conditions such as substrate feeding trajectories and
dilution rates can be estimated by the digital twin and are then validated experimen-
tally. In our exemplary process different operational modes (batch, fed-batch, and
continuous) were applied in bioreactors to generate further data after shake flask
screening and to approach the real application scenario of an up-scaled process. This
aims to identify discrepancies between shake flask results and different bioreactor
operational modes and to illustrate how a digital twin can be adapted accordingly. In
this regard, also scale-down bioreactor approaches can be applied to simulate large-
scale effects already during process development [38, 39]. Using the digital twin
developed in Sects. 2 and 3 technically feasible and physiologically relevant exper-
imental conditions were selected for the three different operational modes. Model-
based methods can also be applied to design experimental plans and sampling
schedules that directly optimize the information output to further improve the
parametrization of process models [8, 40–42]. The obtained results after process
transfer are shown in Fig. 7. In silico designed trajectories that were simulated using
the prototype model available from shake flask screening can qualitatively describe
growth in bioreactor conditions. However, only batch bioreactor behavior was
predicted with acceptable accuracy. The newly available data needs to be integrated
to improve the applicability of the digital twin. Therefore, the underlying process
models need to be continuously adapted to account for new insights, gained during
bioprocess development, see Fig. 6. In addition to new experimental data this can
also include changing technical limitations or performance targets as well as access

Digital TwinDatabase Applica�on

User centered model revision

New Data
Automa�c model adap�on

All criteria ok?

No Yes
No

Model re-iden�fica�on

Fig. 6 Model lifecycle management along a digital twin guided bioprocess development cycle
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to new strain variants. Knowledge management is hereby highly relevant to suc-
cessfully implement QbD principles [43] from screening to manufacturing. Target-
oriented workflows for data analysis and model generation [7, 44] are necessary to
realize this concept in practice and proceed toward automated evolution of digital
twins [45]. A digital twin in use should not be considered as “finished” but as an
evolving tool that needs maintenance [46] and enables continuous process
improvement.

In the first process transfer and model update step shown in Fig. 7 automatic
model adaption by parameter re-estimation was sufficient to extend the digital twin
to fed-batch and CSTR applications. Using multiple data sets in combination can
considerably improve parameter identifiability and model transferability. When
additional bioreactor data sets were combined within one parametrization step,
parameter errors were reduced by a factor of 10 or more, as can be seen in
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Fig. 7 Process transfer
from shake flask screening
(prototype model) to batch,
fed-batch, and continuous
(CSTR) bioreactor
cultivations of recombinant
C. glutamicum on CGXII
medium supplemented with
a sugar mixture. Biomass
concentrations (X) are
shown as relative
representations. The process
model is automatically
adapted by integrating
newly available data sets in
order to improve model
validity and transferability

Usage of Digital Twins Along a Typical Process Development Cycle



Table 2. However, automatic parameter adaption can not account for any new
phenomena that are currently not contained in the model structure. If these effects
are critical to reach the predefined process goals, the model structure has to be
revised [7]. Therefore, new kinetic descriptions are added, e.g. by extending Monod
equations with different limiting substrates or inhibitory compounds. For an over-
view on widely used kinetic descriptions, the reader is referred to [7, 44]. In addition
to changing interactions between already implemented states also new states can be
introduced, e.g. to account for by-product effects that were not considered in the
previous prototype model structure. Subsequently, each model revision step is
validated by analyzing the acceptance criteria for model quality, such as NRMSE
on target states, and parameter identifiability [44]. In the case study presented here,
the addition of a death rate to account for late batch-phase biomass decline, see
Fig. 7, is a possibility to more accurately describe the process dynamics if conditions
of biomass decline are relevant for the target operational mode.

Here, we started with a simple unstructured and unsegregated model. In case this
approach fails to describe process behavior, intracellular metabolism and population
heterogeneity can be included to account, e.g. for metabolic transitions caused by
scale-up effects. The effect of intracellular reactions on bioprocess behavior can be
described by metabolic flux analysis [47, 48], also considering methods for dynamic
flux balance analysis [49]. Recent approaches also include regulatory elements in the
network structure [50, 51]. To deal with the high uncertainty of complex biochem-
ical networks, ensemble modeling techniques can be applied [52, 53]. Besides
intracellular effects, also population heterogeneity can be integrated into a digital
twin if it is needed to describe critical process behavior. Models can be extended by
Euler-Lagrange CFD methods to describe the trajectories of individual cells, and
thereby the population heterogeneity in reactors [54, 55]. The combination of
intracellular metabolism and CFD simulations, yielding structured segregated
models, holds potential for a more targeted design of large-scale bioprocesses [56].

When increasing model complexity by additional equations or parameters there is
often a trade-off between accuracy on training data and model transferability. Cross-
validation with data sets from different operational modes can help to prevent
overfitting. This is particularly challenging when purely data-driven methods are
used and only few and poorly time-resolved data sets are available. As this is
typically the case during early process development we recommend to include
mechanistic elements such as mass balances to facilitate process transfer and robust
real-time usage.

Table 2 Model parameter
uncertainties obtained by
combination of multiple data
sets: shake flask screening
(initial) and further bioreactor
experiments (updated)

Parameter

Rel. Error in %

(Initial) (Updated)

qS1, max 0.53 0.013

YX/S1 3.1 0.13

qS2, max 0.52 0.0027

YX/S2 4.1 0.039
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5 Real-Time Usage of Digital Twins

A multitude of further process optimization opportunities can be made accessible
when the interaction between process setup and digital twin is transferred to a real-
time setting. Process disturbances and deviations can then be monitored (Sect. 5.1)
during running operations and control actions (Sect. 5.2) can be taken in a timely and
targeted manner to prevent process failure. To achieve this goal a process environ-
ment enabling bidirectional data transfer between plant devices and the digital twin
is needed. Nowadays, bioprocess engineers have a variety of digitization tools at
hand to implement real-time functionality for any laboratory, pilot, or production
facility. Data transfer via open platform communications (OPC) technologies
enables interconnection of hardware devices, sensors, and numerical computing
interfaces such as Python or Matlab, as displayed in Fig. 8 for a lab-scale setup.
The numerical computing interface serves as a flexible platform for observer and
controller design. Resulting digital twin elements that are ready for application can
then be transcribed to programmable logic controllers (PLC) used in the respective
manufacturing environment. Additionally, different industrial process information
management systems (PIMS) are available and provide a human–machine interface
further simplifying bioprocess digitalization.

Fig. 8 Digitized bioreactor setup at TU Wien (Institute of Chemical, Environmental and Biosci-
ence Engineering). Interconnection of hardware (sensors and actuators) and software components
enables digital twin based monitoring and control in real-time
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5.1 Monitoring

Real-time information is of crucial importance to evaluate the culture state during
bioprocess operations and to adapt process parameters accordingly. With model-
based approaches unmeasured states, such as biomass concentrations, or states that
are not measurable in real-time, such as biomass specific rates, can be estimated
continuously. To achieve this goal available primary measurements, e.g. substrate
concentrations measured with a time delay at-line, and secondary measurements,
e.g. online offgas analysis or in situ spectroscopy such as FTIR or NIR, need to be
linked to known process inputs such as substrate feed rates and previous process
knowledge in the form of mathematical models. This constitutes the next phase of
digital twin lifecycling as the digital twin is now adapted for real-time usage. As a
first step the process model structure needs to be extended for the relevant measure-
ments used for state estimation or soft sensing. The resulting measurement model
functions, see Eq. 10, link the current system states to the available measurements.
The dynamics of system states (e.g., biomass and carbon substrate concentrations)
are described by the system model functions Eq. 9 containing the ODE system
developed previously in Eq. 7. The selection of information-rich measurements can
be facilitated by observability analysis [57, 58]. For our example process, outlined in
the previous sections, carbon evolution (CER) and oxygen uptake rates (OUR)
calculated from online offgas analysis [59] were selected as secondary measure-
ments to estimate system states during a fed-batch bioprocess. Offgas dynamics can
be described by first principle carbon and redox balances [60]. Alternatively, empir-
ical yield coefficients linking offgas dynamics and growth behavior can be estimated
based on experimental data and introduced as additional model parameters [61, 62].

_x ¼ f t, x, u, θð Þ ¼ _cX , _cSið Þ ð9Þ
y ¼ h t, x, u, θð Þ ¼ CER,OURð Þ ð10Þ

Real-time monitoring strategies using process models in combination with hard-
ware sensors can be regarded as soft(ware) sensors [63]. A variety of soft sensor
strategies are available for up- and downstream processing, such as data-driven
[64, 65], kinetic [11, 66], elemental balancing [60], or hybrid [67–69] modeling
approaches. It is highly recommended to include filtering algorithms for state
estimation to account for process and measurement noise as well as model uncer-
tainty. As bioprocesses show nonlinear behaviors, nonlinear filters such as the
extended [70] and unscented [71] Kalman filter or the particle filter [72] are
commonly applied. Here, we show how particle filtering can be used for real-time
estimation of the most probable biomass concentration in our exemplary fed-batch
process, see Fig. 9. As an comparison, the prototype model generated during shake
flask screening, see Sect. 2, is applied as an model simulation without any real-time
information and as an digital twin including real-time information of CER and OUR.
Whereas regular simulations with the prototype model can only inaccurately
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describe fed-batch behavior, its use within a state estimator framework yields a
satisfactory monitoring accuracy.

It is important to consider the reliability of the measured data before using it as
input for the soft sensor. Ideally, this is done in a process-phase dependent or time-
resolved manner. Including additional sensor equipment can considerably improve
the monitoring performance. But the respective added information should be care-
fully evaluated to avoid an unnecessary increase of setup complexity that can limit
practical applicability, e.g. in a bio-pharmaceutical manufacturing environment.
Model-plant mismatch, caused, for example, by changes in lag phase behavior
during cultivation startup or deviations resulting from batch to fed-batch process
transfer, can be partly corrected by a state estimation algorithm during running
processes. However, if critical process parameters are not covered in the system
and measurement models, these effects need to be further studied experimentally and
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incorporated in the digital twin used for real-time monitoring, see model lifecycle
management in Sect. 4. Once reliable digital twin based monitoring is available, it
can be further deployed for real-time process control as outlined in the following
section.

5.2 Control

Within the final step, process control strategies need to be defined and implemented
in the developed process [73]. Today, a broad range of control strategies are used for
biochemical processes, which reach from the control of physico-chemical entities
within the reactors up to sterilization and cleaning in place, feeding strategies,
harvesting as well as downstream processing by centrifugation, filtration, and
chromatographic methods. Besides defining the optimal setpoints as shown in
Sect. 3 it is important to maintain the setpoints during production and to define
feasible transitions between setpoints or setpoint trajectories.

Deviations from the setpoint or harsh operational changes can lead to significant
product loss, or in the worst case to a total failure of the process. Biochemical
processes are very sensitive against changes in process parameters, so little over-
shoots in temperature and pH control as well as short oxygen or nutrient limitations
can have irreversible effects on the organisms. This sensitiveness requires to act in a
predictive manner as corrective measures based on standard feed-back controllers
(e.g., step control or PID) can be too late or not effective to converge to the aimed
setpoint. A digital twin can hereby help to predict the needed process actions in
function of a predictive model, which can then be fine-tuned by a feed-back signal as
displayed in Fig. 10. The feed-forward term of this so-called two-degree-of-freedom
control [74] or also feed-forward, feed-back control [75] can consist of a predictive
optimization model or a linearized model able to directly give the currently needed
manipulated input variables u�.

To obtain a direct calculation of the model output the model can be inverted by
the so-called feed-back linearization. For the examined exemplary process this can
be easily done for the uptake of qS1 for setpoints (qS1setpoint < qS1,max ) as the uptake

kinetics are solely dependent on the related concentration of substrate 1 (S1). For

Feed forward
(Digital Twin)

e uFeed back (PID) Process

d

yy*

u*

Monitoring
(Digital Twin)

ŷ

y*

y=h(x)

Fig. 10 Two degree of freedom control with digital twin based feed forward part and monitoring of
the process output as described in Sect. 5.1
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feed-back linearization of more complex and interacting systems mathematical pro-
cedures exist, which can be found in [76] and were successfully applied in biotech-
nological processes as shown in [13, 77, 78]. For the specific uptake rate qS1 the
differential equation for substrate 1, given in Eq. 7, can be reformulated under steady
state assumption cS1

dt ¼ 0:

Fin ¼ V
cS1,in � cS1

cX qS1setpoint ð11Þ

to obtain the linearized control law with Fin being the manipulable variable u as a
function of the setpoint (q_S1, setpoint) qS1setpoint, the current biomass cX and the sugar

concentration cS1 and the feed concentration cS1, in.
Within Fig. 11 fed-batch simulations of different qS1 setpoints are shown. The

first graph contains the feed profiles. After reaching a maximum volume of 3 L the
processes were stopped. In the second graph the resulting qS1 profiles are displayed.
After a relatively short transition phase all setpoints can be reached by the applied
feed profiles. In dependence of the set qS1 different uptake rates qS2 can be observed.
For the second substrate a much longer time to reach a stable uptake can be seen.

Based on the observed results a relation between qS1 and qS2 can be established,
which is displayed in Fig. 12. Under usage of the feed with a fixed ratio of S2¼ 3 � S1
a qS1 between 0.06 and 0.2 leads to a stable qS2 of around 0.2. Between qS1 ¼ 0 and
0.06 only little substrate 2 (S2) is accumulated, whereas with higher qS1 setpoints
higher growth (μ) can be reached albeit at the cost of high accumulation of S2. Based
on the objective to efficiently convert both substrates into biomass a qS1 setpoint of
0.06 seems to be the best trade-off, which is shown in Fig. 13.

Similarly as described in Sect. 3 a potential oxygen limitation can be additionally
considered in the model. Hereby, the feed rate region where the oxygen concentra-
tion is below 30% of oxygen saturation is indicated with a gray box, in Fig. 13. We
can conclude that the aimed setpoint can only be maintained around 15 h, before

Fig. 11 Feed-forward control simulation with different qS1 setpoints and the resulting qS2 values
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growth is limited by the oxygen transfer. Therefore, an even lower setpoint
(qS1 ¼ 0.02) was selected to avoid oxygen limitation throughout the whole process
duration.

Within Fig. 14 the results of a controlled reactor run are displayed. Based on the
inverted model, the feed rate to obtain the aimed qS1 setpoint was applied on a
running process. Based on the model the expected substrate 2 uptake qS2 could be
predicted as well, which is in good accordance with the measured values. Also the
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predicted overall growth (μ) is in good accordance with the measurements. Within
this simple example of feed-back linearization it could be shown how a digital twin
can be used to control non-directly measurable entities, such as specific reaction
rates, which is of great value for biotechnological processes.

To finally integrate digital twin based monitoring and control strategies into
industrial operations their applicability needs to be validated. In the context of
regulatory requirements, interpretability of algorithms is important to pinpoint
cause and effect of control actions, which can be more readily achieved when
using mechanistic or hybrid, mechanistic data-driven models. Furthermore, model-
based robustness analysis is necessary to assess controller robustness against differ-
ent process deviations, e.g. by using Monte Carlo simulations as described in Sect. 3.
Subsequently, repeated experimental verification runs can ensure that process reli-
ability requirements are met under target operational conditions. When process
tolerance limits are not exceeded the validated monitoring and control strategy can
be put in use.

6 Conclusion

The complexity of bioprocesses demands high efforts toward the full process
development cycle. The integration of digital twins can help to deal with this
complexity. Besides having a clear application goal governing the overall digital
twin development process, a suitable software environment is key to transform the
model into an integrated digital twin. In addition to software functionalities includ-
ing structured model building and analysis workflows, data and model lifecycle
management is important. Based on an existing framework, displayed within Fig. 6,
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novel algorithms and use cases will be continuously added and tested for their
applicability on biotechnological processes. With this solid basis the development
of models and their transformation into functional digital twins is greatly enhanced.
For the application of model-based solutions for monitoring and control, as
described in Sect. 5 a real-time architecture is needed. This usually consists of a
centralized database with the ability to directly communicate with the hardware
devices and sensors and a numerical computing interface able to implement, main-
tain, and adapt the developed model-based solutions. Based on the OPC UA
standard available today, this interconnection of database, software, and hardware
devices was significantly simplified. Despite these technical solutions are accessible
there are still different hurdles for the successful implementation of digital twins in
today’s industry. Firstly, development costs of model-based monitoring and control
tools are currently high and retrofitting of existing installations can be challenging
due to regulatory reasons, especially in the bio-pharmaceutical industry. Automated
generation of model-based solutions and a more quantitative assessment of process
optimization potential as well as associated risks can further promote digital twin
usage. Another important driver is operator acceptance, as model-based decision-
making that is not understandable to the personnel involved in plant control is
unlikely to be supported. Human–machine interfaces that make digital twin deci-
sions explainable, also under usage of machine learning approaches, are needed.
Additionally, process systems engineering is only slowly becoming a more relevant
part of the standard curriculum of biochemical engineering study programs. Once
progress is made to overcome the aforementioned hurdles, computer-integrated
manufacturing can be employed more efficiently to make Biotech industry ready
for future challenges.
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