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Abstract 
 

For many decades, the setup and solution of polymer 

processing models involved use of analytical or numerical 

methods. These characteristics have changed with the 

recent digitization of polymer processes and the collection 

of enormous amounts of data. It is increasingly common to 

use data-driven modeling techniques to analyze processes, 

for which analytical and numerical models may not fully 

describe the process behavior in operational situations. 

These techniques have significantly extended the set of 

tools available to the engineer, providing new possibilities 

of how to develop more accurate process models. As a 

result, the setup of an appropriate modeling strategy more 

than ever requires a thorough understanding of the 

individual modeling techniques. This article was designed 

to address the potentials and limits of analytical, numerical, 

and data-based modeling techniques when modeling 

polymer processes. Moreover, we show how these methods 

can be combined into one hybrid approach to solve polymer 

process models not solvable so far. The findings are further 

illustrated by means of a particular use case, which models 

the flow of polymer melts in single-screw extruders. 

 

Introduction 
 

Modeling and simulation has been an important 

discipline in the field of polymer processing. In order to 

better understand and optimize polymer processes, a large 

variety of mathematical models have been developed, 

attempting to represent the actual process with equations. 

While experimental design and optimization procedures 

generally require use of cost-intensive prototypes, it is 

often less expensive and time consuming to develop a 

mathematical model of the physical process. Due to the 

complex material behavior of polymers, one of the main 

concerns of the engineer has been to strike a reasonable 

balance between level of accuracy and degree of 

sophistication. In many cases, it is possible to simplify the 

physical process model sufficiently in order to be able to 

find an analytical solution. The less complex the model, 

however, the less accurately it describes the actual process. 

 

With the steadily growing requirements to decrease 

costs and improve product quality, numerical methods have 

been increasingly applied to solve more realistic polymer 

processing models. By relaxing certain assumptions, the 

complexity of the model increases and analytical solutions 

become elusive. Numerical techniques provide a useful 

tool for obtaining approximate solutions to those problems. 

To date, various complex polymer processes have been 

realistically simulated ranging from mold filling with fiber 

orientation to extrusion with viscoelastic effects [1]. Due to 

the increased complexity of the governing equations to be 

solved, however, numerical analyses tend to be time 

consuming and generally require expert knowledge. 

 

When using analytical or numerical techniques, the 

aim is to predict the physical phenomena of a process. With 

the recent computerization of our society and the explosive 

growth of data over the last few years, data-based modeling 

has grown enormously in importance. This approach has 

already been successfully implemented in highly digitized 

applications such as online-marketing or social media; 

however, it is still at an early stage of development in the 

field of engineering. Rather than solving the governing 

equations of a process model, the general objective is to 

extract knowledge implicitly captured in large datasets [2]. 

As a strongly interdisciplinary field, data-based modeling 

provides a large variety of techniques comprising the use 

of statistics, machine learning, database technology, or 

high-performance computing. 

 

 
Figure 1. Hybrid modeling. 

 

The applicability of the previous modeling techniques 

strongly depends on the complexity of the problem at hand. 

While analytical or numerical models try to explain the 

physical behavior of a process, data-based modeling can be 

used if there is no information about the functioning of a 

system at all. In order to combine the advantages of these 

methods, we have recently applied a hybrid modeling 

approach to (i) calculating the pressure loss of melt-

filtration systems in polymer recycling processes [3-4], (ii) 



 

 

optimizing the manufacturing of powder coatings [5], and 

(iii) predicting the flow in the metering zone of single-

screw extruders [6-12]. This method incorporates all 

available knowledge about the process into one approach, 

thereby offering a novel strategy to solve polymer 

processing models not solvable so far (Figure 1). As a 

characteristic feature, the novel modeling procedure 

provides fast and stable analytical relationships even for 

highly complex physical problems. 

 

This research compares the advantages and 

disadvantages of analytical, numerical, and data-based 

techniques when modeling polymer processes in general 

and the flow of polymer melts in single-screw extruders in 

particular. For the latter use case, we moreover illustrate 

how these methods were recently combined into one hybrid 

modeling approach to predicting the pumping capability 

and viscous dissipation of metering zones.  

 

Analytical Modeling 
 

An equation is said to have an analytical solution if at 

least one solution can be written as a closed-form 

expression, which may contain constants, variables, 

arithmetic operations, and a specific set of functions. When 

analyzing engineering systems, analytical solutions offer 

several advantages. Because solutions are represented as 

analytical expressions, they can be mathematically 

interpreted. With parameter dependencies being expressed 

explicitly, solutions provide a clear view of how process 

variables affect the behavior of the underlying system. 

Moreover, if derived, analytical solutions are typically fast 

to compute.  

 

The method of applying analytical techniques for the 

analysis of the melt conveying in screw pumps was 

employed in many theoretical studies [13-21]. The general 

procedure was as follows: Using the fundamentals of fluid 

mechanics, the flow of polymer melt in the screw channel 

was described mathematically by means of a physical 

process model which included the conservation equations 

of mass, momentum, and energy and constitutive 

equations. These governing equations were then simplified 

by means of modeling assumptions. Traditionally, the 

process was represented by a one-dimensional isothermal 

flow of a Newtonian fluid between two parallel plates in 

linear movement. Assuming the viscosity of the polymer 

melt to be constant, analytical solutions were obtained for 

down-channel and cross-channel velocity profiles, flow 

rate, power consumption, and other process variables. 

 

Very few practical processing problems lead to exact 

analytical solutions. These are usually restricted to simple 

geometries with simple material properties and physical 

conditions. In the flow analysis of metering zones, 

analytical solutions are mainly reserved for Newtonian 

fluids, whereas shear-thinning polymer melts generally 

require use of numerical methods. Even for a one-

dimensional temperature-independent flow of a power-law 

fluid between two parallel plates in relative movement, no 

exact analytical closed-form solution has been found to 

date [1]. Table 1 summarizes the advantages and 

disadvantages of analytical modeling techniques. 

 

Table 1. Advantages and disadvantages of analytical 

modeling techniques. 

Advantages Disadvantages 

Provide fast, stable, and 

exact solutions 

Restricted to special types 

of problems 

Solutions can be 

interpreted 

Require use of a number 

of modeling assumptions 

Parameter dependencies 

are expressed explicitly 

Reality often differs from 

ideal conditions 

 

Numerical Modeling 
 

Numerical methods can be used to derive approximate 

solutions to process models, for which analytical solutions 

are not available. In contrast to their counterparts, 

numerical solutions cannot be expressed in the form of 

complete mathematical expressions. Rather, they are given 

by discrete numerical values, which must be recalculated 

every time the parameter set changes. A major advantage 

of numerical procedures is their capability of handling 

large equations systems with different degrees of 

nonlinearities. In engineering systems, nonlinear physics 

are often found in combination with complex three-

dimensional geometries. Without oversimplifying the real 

physical process, numerical methods provide detailed 

insights into the behavior of these systems by quantifying 

process variables that cannot be easily measured. 

 

In the flow analysis of single-screw extruders, 

numerical methods were employed to include shear-

thinning flow behavior of the polymer melt. In this case, 

the governing transport equations are coupled due to the 

dependency of viscosity on shear rate. Physically this 

means that the drag and pressure flows affect each other at 

each position of the flow field. The complexity is further 

increased by the combined effect of shear in the down- and 

cross-channel directions. To refine the understanding of 

melt-conveying in single-screw extruders, efforts have 

been directed towards numerical analyses of power-law-

model based flows. Two approaches were mainly applied: 

For a long time, the use of numerical methods was limited 

by the computational power available to the engineer. As a 

result, early numerical analyses simulating shear-thinning 

flows in single-screw extruders developed stand-alone 

solution algorithms optimized for the task at hand [22-29]. 

These computational barriers have shifted tremendously 

with the advent of more advanced computers. The trend of 

more recent flow analyses is towards the use of commercial 

software packages [30-31]. In contrast to stand-alone 



 

 

solving algorithms, these typically provide a large set of 

numerical procedures. However, since they usually solve 

the full set of conservation equations, they are significantly 

more time consuming and computationally expensive. In 

addition, use of commercial simulation software often 

involves acquisition of expensive licenses. Table 2 

provides an overview of the potentials and limits of 

numerical modeling techniques. 

 

Table 2. Advantages and disadvantages of numerical 

modeling techniques. 

Advantages Disadvantages 

Applicable to complex 

geometries 

Offer approximate 

solutions 

Applicable to arbitrary 

nonlinear physical 

problems 

Solving process can be 

time consuming 

Allow a more accurate 

representation of reality 

Solving process can be 

computationally expensive  

 

Data-Based Modeling 
 

Data-based modeling techniques can be used to model 

polymer processes, where even numerical methods fail to 

deliver solutions. This may be the case if the complexity of 

the physical process model goes beyond a critical level or 

if there is a lack of process information. Many processes 

can be physically modeled, but solving the models may 

pose practical challenges if, for example, input parameters 

are unknown or initial and boundary conditions are not 

available. In these situations, data-driven models can fill 

the gap left by analytical or numerical process models. 

 

From a general viewpoint, data-driven modeling is an 

iterative process that involves several steps [2]: (i) data 

cleaning, (ii) data integration, (iii) data selection, (iv) data 

transformation, (v) data mining, (vi) pattern evaluation, and 

(vii) knowledge representation. Data mining is one of the 

most important steps in the knowledge discovery process, 

because it uncovers patterns and knowledge from large 

amounts of data. For polymer processes, these may not only 

include experimental lab or production data, but also data 

resulting from analytical and numerical modeling. A wide 

variety of machine learning techniques can be applied to 

identify patterns in datasets. These can be classified into 

two main categories, as shown in Figure 2: (i) supervised 

and (ii) unsupervised learning algorithms. Supervised 

learning algorithms can be applied to discover relationships 

between input and target attributes [32]. The main intention 

is to learn from labeled training data, where the targeted 

features are known, how to predict labels of unseen 

instances. Supervised learning algorithms can be further 

divided into classification and regression algorithms. 

Unsupervised learning, in contrast, refers to modeling the 

distribution of instances in a typical high-dimensional input 

space [32]. These learning techniques, which are used 

when there is no class to be predicted, include clustering 

and association. 

 

 
Figure 2. Overview of data-mining techniques.  

 

Although providing great potential, data-based 

modeling is still at its infancy in the field of polymer 

processing. So far, the method is mainly applied for quality 

control and predictive maintenance systems. Only a few 

analyses have employed data-based modeling techniques 

for developing new process models [3-11, 33]. When using 

experimental data for data-based analyses, the models are 

usually restricted to the specific type of process under 

consideration. As a result, new models have to be 

constructed if for example the size of the processing 

machine or the behavior of the material changes. Table 3 

compares advantages and disadvantages of data-based 

modeling techniques. 

 

Table 3. Advantages and disadvantages of data-based 

modeling techniques. 

Advantages Disadvantages 

Arbitrary source for 

datasets 

Accuracy of predictions 

depends on data quality 

Knowledge about the 

underlying process is not 

required 

Correlations are only valid 

within the range of the 

underlying dataset 

Applicable to problems 

that cannot be analyzed 

physically 

Ignore the physics of the 

underlying system  

 

Hybrid Modeling 
 

Our research group has recently proposed a hybrid 

modeling approach to solve process models not solvable so 

far [3-12]. The following section illustrates the main 

characteristics of the modeling approach. To demonstrate 

its novelty and usefulness for a given example, the 

development of analytical models for predicting the 

pumping capability and viscous dissipation in metering 

channels is shown. Figure 3 represents a flow chart of the 

modeling procedure, which combines analytical, 

numerical, and data-based modeling techniques. It is 

pointed out that the modeling procedure is not restricted to 

particular types of problems. In our recent studies, the 

approach was mainly applied to analyze flows of polymer 

melts in processing machines. However, it can also be used 



 

 

to build new models for predicting the mechanical behavior 

of plastics products during design and manufacturing.  

 

 
Figure 3. Flow chart for our hybrid modeling approach.  

 

Analytical modeling 
 

In a first step, a mathematical model of the physical 

process is developed, which requires a fundamental 

analysis of the governing process equations. For the 

example shown here, these included the conservation 

equations of mass, momentum, and energy and a 

constitutive equation for the rheological behavior.  

 

 
Figure 4. Representation of the screw channel. 

To reduce the complexity of the mathematical 

problem, a few modeling assumptions are applied in terms 

of (i) geometry, (ii) processing conditions, and (iii) 

material behavior. This step, which is essential for the 

following numerical solving process since it decreases the 

actual computation time, strongly depends on the 

characteristics of the physical problem. The aim is to find 

a reasonable balance between level of accuracy and 

sophistication.  

 

We used the flat-plate assumption in combination with 

kinematic reversal to geometrically represent the metering 

zone of a single-screw extruder. This entails that the helical 

screw channel is considered as a flat rectangular channel 

with a stationary screw and a moving barrel (Figure 4). The 

curvature of the screw being ignored, the governing 

equations were formulated using a Cartesian coordinate 

system. This is a reasonable simplification if the channel 

depth is significantly smaller than the barrel diameter 

[34, 35]. Considering a closed screw channel, leakage flow 

over the screw flight was further omitted. The following 

modeling assumptions were applied in terms of processing 

conditions; (i) the flow is independent of time, fully 

developed, and isothermal; (ii) there is no slip at the wall; 

and (iii) gravitational forces are ignored. With these 

assumptions, we defined the physical process model by the 

following conservation equations of mass and momentum 

and the velocity boundary conditions in Table 4: 
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To describe the stress responses of the polymer melt being 

processed, a constitutive equation was introduced: 
 

 ( )2 = D , (6) 

 ( )T1
 

2
=  + D v v . (7) 

 

The shear-thinning flow behavior of the polymer melt was 

modeled as a power-law fluid: 
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This well-known relationship relates the viscosity and the 

shear rate via the consistency and the power-law index. 

Further, we assume an incompressible polymer melt. 

 

Table 4. Velocity boundary conditions. 

x y vx vy vz 

0 y 0 0 0 

w y 0 0 0 

x 0 0 0 0 

x h vb,x 0 vb,z 

 

In the second step, the governing process equations are 

rewritten in dimensionless form. The general objective is 

to detect the physically independent dimensionless 

parameters of the system. Two problems that are defined 

by identic dimensionless parameters are similar in terms of 

their underlying physics. It is thus possible to recognize 

operational situations that may run under different sets of 

processing conditions, but are governed by the same 

physics. Moreover, the number of influencing parameters 

can be significantly reduced. Using dimensional analysis 

and the theory of similarity, we transformed our physical 

process model into dimensionless form and showed that the 

flow equations were governed by four independent 

dimensionless input parameters: (i) the aspect ratio of the 

screw channel h/w, (ii) the screw-pitch ratio t/Db, (iii) the 

power-law index n, and (iv) a dimensionless down-channel 

pressure gradient p,z defined as: 
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These characteristic dimensionless parameters were 

then varied to create a large set of roughly 90,000 

physically independent modeling setups. 

 

Numerical modeling 

 
Figure 5. Dimensionless flow rate as a function of 

screw-pitch ratio and dimensionless pressure gradient for 

n = 0.5 and t/Db = 2.0. 

In the third step, the physically independent design 

points derived in the previous section are solved 

numerically. For the example presented here, we evaluated 

the volume flow and the total viscous dissipation in the 

screw channel. These quantities were obtained from the 

velocity field and the cross-channel pressure distribution in 

the screw channel: 
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For modeling, a dimensionless form of the output 

variables was introduced: 
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For each modeling setup, the target variables were 

evaluated numerically by means of a parametric design 

study. Figure 5 shows numerical solutions for the volume 

flow rate for a given set of input parameters. Similar results 

were obtained for the entire set of modeling setups. At this 

stage, the numerical solutions are represented by discrete 

values, whereas a mathematical relationship between input 

and output parameters is still not available. 

 

Data-based modeling 
 

In the fourth step, the numerical results of the 

parametric design study are approximated using data-based 

modeling techniques. This can be done by using supervised 

learning algorithms. While the aim of classification is to 

learn a function that assigns one of several predefined 

classes to each data item, the objective of regression is to 

find a function that predicts a real numerical value for each 

input object [37]. Several techniques are available to derive 

correlations between input and output data including e.g. 

decision trees, neural networks, support vector machines, 

or symbolic regression.  

 

For the problem presented here, we used symbolic 

regression based on genetic programming to derive 

regression models for the dimensionless volume flow rate 

and the total viscous dissipation as a function of the 

characteristic dimensionless input parameters: 
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Unlike other regression methods, this type of 

regression analysis requires neither model structure nor 

model parameters of the regression model to be predefined. 

Rather, by employing evolutionary computation, symbolic 

regression involves finding the best model structure and its 

coefficients simultaneously. The following settings need to 

be predefined: 

 

◼ terminal set (set of input variables or constants) 

◼ function set (functions used for regression) 

◼ fitness function (quality measure) 

◼ algorithm control parameters  

◼ termination criterion (e.g., error tolerance) 

 

The solving process is driven as follows: By randomly 

combining the mathematical building blocks that are 

predefined by a function set, initial expressions are derived, 

which are then recombined to yield new models. For 

producing new solutions, the algorithm applies two genetic 

operators [36]: Crossover takes two individuals (parents) 

and produces new individuals (offspring) by combining 

parts of the parents. Mutation is an arbitrary modification, 

which creates new points in the search space.  

 

We divided the dataset into three subsets: (i) a training 

set, (ii) a validation set, and (iii) a test set. Whereas the first 

two subsets were employed to develop the regression 

models, the third was used to validate the relationships for 

unseen instances by means of error predictions. In this 

manner, three analytical regression models were developed 

for predicting the pumping capability and viscous 

dissipation of metering zones [7,12]: 
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As a useful feature, our approximation models show a 

simple structure. The subfunctions A1 to A14, B1 to B7, and 

C1 to C7 depend on the dimensionless influencing 

parameters, model coefficients, basic arithmetic 

operations, and simple analytical functions (e.g., square 

function, exponential function). The models consider the 

influence of both the shear-thinning flow behavior of the 

polymer melt and the effect of the three-dimensional 

channel geometry. Estimation is possible for pressure-

generating and pressure-consuming metering zones. 

Compared to time-consuming and computationally 

expensive numerical analyses, the models are significantly 

faster and do not require large computational power. The 

quality of the developed regression models was evaluated 

by means of an error analysis. Figure 6 shows scatter plots 

of the symbolic regression models, comparing the 

numerically evaluated results with the approximated 

solutions of the test set. 

 

(a) 

 
(b) 

 
 

 



 

 

(c) 

 
Figure 6. Scatter plots of the symbolic regression 

models: V = f (h/w, t/Db, n, p,z) (a), Q = f (h/w, t/Db, n, 

V) (b), and Q = f (h/w, t/Db, n, p,z) (c). The dashed lines 

indicate an absolute error of 0.06 for (a) and a relative error 

of 5% for (b) and (c). 

 

Conclusion 
 

This article introduced a hybrid modeling approach to 

solving polymer processing models not solvable so far. The 

method incorporates analytical, numerical, and data-based 

modeling techniques into one approach. Combining the 

advantages of each modeling technique, the procedure 

considers the physics of the underlying system and 

provides simple, fast, and stable analytical relationships for 

complex processes. The usefulness of the hybrid modeling 

approach has been demonstrated in various applications [3-

11]. Due to their simple algebraic structure, these models 

can not only be implemented in traditional fields – such as 

process optimization and troubleshooting – but also in 

emerging applications – such as digital twins and soft 

sensors. The above outlined features of models have the 

potential to save resources, reduce timelines, and improve 

manufacturing. 
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