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A B S T R A C T   

Calibration models required for near-infrared (NIR) spectroscopy-based analysis of fresh fruit frequently fail to 
extrapolate adequately to conditions not encountered during initial data acquisition. Such different conditions 
can be due to physical, chemical or environmental effects and might be encountered for instance when mea
surements are carried out on a new instrument, at a different sensor operating temperature or if the model is 
applied to samples harvested under different seasonal conditions. To cope with such changes efficiently, for the 
first time, this study investigates the application of domain-invariant partial least square (di-PLS) regression to 
obtain calibration models that maintain the performance when used on a new condition. In particular, di-PLS 
allows unsupervised adaptation of a calibration model to a new condition, i.e. without the need to have ac
cess to reference measurements (e.g. dry matter contents) for the samples analyzed under the new condition. The 
potential of di-PLS for compensation of instrumental/seasonal and sensor temperature changes is demonstrated 
on four different use cases in the realm of NIR-based fruit quality assessment. The results showed that di-PLS 
regression outperformed standard PLS regression when tested on data affected by the aforementioned factors. 
The prediction R2 increased by up to 67 % with a 46 % and 80 % decrease in RMSEP and prediction bias, 
respectively. The main limitation of di-PLS is that, to operate efficiently, it requires that the distribution of the 
response variables to be similar in the data from the different conditions.   

1. Introduction 

Near-infrared (NIR) spectroscopy has been the key technique for fruit 
quality analysis and has gained wide acceptance in different stages of the 
fruit supply chain [1,2]. NIR spectroscopy is of high importance being a 
rapid and non-destructive technique and providing access to key 
chemical components and physical properties of agricultural produce 
[3–5]. An accurate estimation of properties such as dry matter (DM) and 
soluble solids content (SSC) with NIR spectroscopy provides real-time 
access to fruit quality [1,2,6]. For detailed information regarding 
application of NIR spectroscopy to fruit quality analysis, readers are 
referred to the following references [7,2]. In recent years, NIR spec
troscopy is being increasingly deployed in portable modes such as 
handheld or pocket devices [8,9]. Such a portable nature of new sensors 
and their commercial availability has made NIR spectroscopy popular 
not only in research laboratories but also among consumers. 

NIR spectroscopy data are multivariate and consist of highly over
lapping peaks. Thus, latent variables (LVs) based methods, such as 

partial least square (PLS) regression, are usually used to establish cali
brations to predict quality attributes of fruit [10–12]. PLS regression 
extracts the underlying peaks related to the property of interest as LVs 
exhibiting maximal covariance with the property of interest [13]. The 
LVs can be understood as the resolved peaks which were previously 
hidden and were extracted by the PLS regression. However, in the 
domain of fruit quality analysis, PLS regression models often fail to 
perform well when tested on a new condition, e.g. a different instrument 
[14], on a sample set collected from a different season [15–17], a new 
cultivar [18] and a different sensor operating temperature [19]. A 
reason can be understood as the modelling to be suboptimal and the 
extracted LVs are highly specific to the first condition, and thus fails to 
generalize to a new condition [20]. In other words, the measurements 
from the new condition have some variability which is not yet modeled 
by the model made on the data form the first condition. 

Several works have been conducted to make specific models dedi
cated to the conditions, for example, a segmented model for pears based 
on their firmness levels [21], DM and SSC models for a single pear 
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cultivar [22], DM and SSC models for a single mango cultivar [23], SSC 
models for a single pear cultivar [24], firmness models for a single 
mango cultivar [25], internal browning detection models for a single 
mango cultivar [26], and DM and SSC for a single pear cultivar [27]. 
However, developing specific models limits the generalizability of the 
NIR models. Other works have tried to update calibration models by 
incorporating new reference samples measured under the new condi
tions and recalibrating the old models. For example, the effects of 
temperature were removed with the help of an external parameter 
orthogonalization approach to improving SSC prediction in apples [28], 
the external influences during the on-line implementation of NIR spec
troscopy for wine fermentation monitoring were removed with the use 
of dynamic orthogonal projections [29] and the fruit models were 
recalibrated by incorporating information from new conditions [16]. 
Model updating works well, but a drawback of model updating is that it 
requires new reference samples to be measured which from a portable 
spectroscopy point of view is inconvenient, leading to wastage of time 
and money [8]. A potential solution for portable spectroscopy could be 
the development of generalized modelling approaches that do not 
require new reference measurements at the user end and can be used 
directly on a new condition. 

Samples measured with different instruments, under different sea
sonal conditions, or sensor operating temperatures have intrinsic dif
ferences [20,25]. In the case of different instruments, the differences 
could be due to different detector sensitivities, light source and cali
bration of the detectors [30,31]. In the case of multi cultivar/seasons, 
the differences in physicochemical properties of the fruit peel and flesh 
could introduce variation in data set [32]. In the case of temperature, the 
difference could be due to the differences in the packing of molecules 
due to temperature variations [28]. In all the cases, there is some vari
ation which is left unmodeled and limits the generality of models when 
tested on a new condition. A possible solution could be to develop 
models that are invariant to minor differences caused by different con
ditions. In the framework of PLS regression modelling, the aim should be 
to learn LVs that are invariant to different conditions. To this end a new 
method called domain-invariant partial least square (di-PLS) regression 
has recently been proposed [33,34]. di-PLS is a semi-supervised distri
bution alignment technique that aims at identifying invariant LVs across 
different domains [33,34] with respect to mean and co-variance. Moti
vated by the theory of learning from different domains, such distribution 
alignment techniques aim at finding representations where some source 
and target domain data appear to be sampled from the same underlying 
distribution with the goal to derive models that generalize over the 
domains [35]. Most importantly, di-PLS is capable of extracting 
invariant LVs from labeled data (spectra and reference values) from the 
source domain and unlabeled data (only spectra) from the target 
domain. More details on the di-PLS method are provided in the materials 
and methods section. Regarding NIR-based fruit analysis, different do
mains can be considered as the different instruments, seasons, cultivars 
and sensor operating temperatures. Hence, di-PLS might be employed to 
compensate for such changes. 

The objective of this study is to demonstrate the potential of di-PLS 
regression for obtaining generalized predictive models for fruit qual
ity. As a baseline, di-PLS regression was compared with the standard PLS 
regression. The demonstration is presented with four different cases of 
fruit quality prediction i.e. standards free calibration transfer between 
two instruments (one case), compensation of seasonal differences (two 
cases) and sensor temperature variability (one case). It is worth high
lighting that di-PLS was implemented without the need for reference 
measurements from the new conditions. In all the cases, the aim was to 
predict DM in fresh fruit. To demonstrate the applicability of the method 
for different fruit types, we used data sets from apple, mango and olive. 
To the best of our knowledge, there are no existing methods in the 
chemometrics domain, which allow to compensate the external in
fluences without requiring any reference measurement from the new 
condition. There are methods available such as EPO [28] and DOP [29], 

which removes the external influences from the NIR measurements, 
however, they require reference measurements from a different condi
tion to model and remove those external influences. 

2. Materials and methods 

Data sets 
Four different cases related to NIR -based fruit quality prediction 

were considered in this study. A description of data set is provided in 
Table 1. All the cases were related to the prediction of DM (%) in indi
vidual fruit. All the spectra were 2nd derivative pre-processed (Savitzky- 
Golay window size = 15, polynomial order = 2) to reveal the underlying 
peaks related to –OH bond overtones related to water. In all the cases, 
the instrument used was a Felix handheld spectrometer, Felix in
struments, Camas, WA, USA. The Felix spectrometer generates visible 
and near-infrared (VNIR) spectroscopy data in the spectral range 
of ~ 400–1100 nm. Since, the DM has direct correlation with water 
bands that are present in the NIR region (>705 nm) of the spectrum. 
Therefore, only the NIR region was considered for multivariate analysis. 
Specifically, the olive data set [19] was used to demonstrate model 
transfer between two instruments. The data set consists of olive fruit 
measured with two spectrometers (Felix handheld spectrometers). The 
original data set consisted of NIR spectroscopy measurement on two 
sides of each olive fruit which was averaged in this analysis to have a 
single spectrum for each fruit. The mango temperature data set [18] 
used in this study consists of mango fruit measured at two different 
sensor temperature levels i.e., medium (~25 ◦C) and high (~30 ◦C). The 
mango season data set [18] used in this study consists of multi-season 
mango fruit NIR data from the years 2016 and 2018. The apple season 
data set [17] consists of NIR spectroscopy measurements on individual 
apples acquired during two seasons, i.e. 2015 and 2016. 

3. Partial least square regression 

PLS regression is a common chemometric technique for calibration 
on NIR data [13]. PLS regression deals with the multi co-linearity in 
multivariate signals by extracting the underlying peaks in terms of LVs 
that explain most of the variability in some response variable(s) y. To 
this end, PLS regression first extracts a set of A latent variables T = [t1, 
…,tA] (known as scores) from an N × K measurement matrix X (of N 
samples and K variables), that exhibit large covariance with the 
response. y is subsequently regressed against the N ×A matrix T in order 
to establish the functional relationship between measurements and 
response. The NIPALS (non-linear iterative partial least-squares) algo
rithm for PLS regression starts by using the response variable (in case of 
a single response variable) to estimate the weights w for the X matrix 
such that the covariance between Xw and y is maximized. The weight 
vector is further normalized to unit norm, i.e. ||w|| =1. The X-scores are 
then estimated as t ¼Xw and y subsequently regressed against t. 
Finally, X and y are deflated in order to remove the variation explained 
by the current LV. The process is repeated e.g. until some cross- 
validation statistic indicates that there is no increase in model perfor
mance when extracting additional LVs [13]. 

4. Domain invariant partial least square regression 

di-PLS regression extends ordinary PLS regression by a domain reg
ularization term in order to minimize between-domain variability across 
two matrices XS (NS × K) and XT (NT × K) while maximizing the 
covariance between XS and the corresponding response y. XS and XT 
stands for the source and the target domain matrices, respectively. The 
first step of di-PLS regression is the mean centering of the inputs (XS, XT) 
and the outputs (y). Subsequently, the NIPALS algorithm is employed to 
extract the domain-invariant latent variables across the source and 
target domains, i.e. by minimizing the function as explained in Eq. (1). 
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min
w

⃦
⃦Xs − ywT

⃦
⃦2

F + γwTΛw (1)  

where ||.||F refers to the Frobenius norm, γ is the domain regularization 
parameter, w is the weight vector and Λ = Kdiag(|λ1|,⋯, |λK|)KT is the 
matrix obtained by taking the absolute value of all eigenvalues λ1,⋯, λK 
in the Eigen decomposition as explained in Eq. (2). 

Kdiag(λ1, ..., λK)KT =
1

Ns − 1
XT

S XS −
1

NT − 1
XT

T XT . (2) 

K in Eq. (2) is the eigenvector matrix of the difference between the 
domain-specific covariance matrices. The first term in eq. (1) corre
sponds to the ordinary NIPALS objective and its minimum is obtained by 
the direction w (weight vector) where XS has maximum squared sample 
covariance with the response vector y. The second term in eq. (1) rep
resents an upper bound on the absolute difference between the source 
sample variance and the target sample variance in the direction w. The 
(unique) solution of eq. (1) is attained by the weight vector obtained as 
Eq. (3) divided by its length wTw. 

wT =
yTXS

yTy

(

I +
γ

yTy
Λ
)− 1

(3) 

The coordinates (scores) tS and tT of the (domain-invariant) pro
jections corresponding to the direction w can be computed by 

ts = Xsw and tT = XTw. (4) 

Similar to PLS regression, di-PLS regression also involves an 
orthogonalization step to remove the variation from the data which is 
already explained by the current LV. The orthogonalization is performed 
such that 

XS := XS − tS(tT
S tS)

− 1tT
SXS (5) 

and analogously for XT. The remaining steps in di-PLS are equal to 
the standard PLS regression algorithm [34]. All experiments were con
ducted using in-house implementations of PLS and di-PLS in python 3.7. 

The regularization parameter γ in Eq. (1) was fixed for each LV ac
cording to the heuristic described in literature [36]. In brief, γ was set 
such that equal weight was assigned to both terms in Eq. (1). The 
number of LVs for PLS regression and di-PLS regression models were 
chosen based on the inflection point of the cross-validation error plot. 

5. Results and discussion 

Instrument transfer case for olive fruit data 
The results of PLS regression and di-PLS regression for standard-free 

calibration transfer between two Felix NIR handheld spectrometers for 
prediction of DM in fresh olive fruit are shown in Fig. 1. Most of the 
spectral differences between the devices that are visible at wavelengths 
beyond 1000 nm could be because of differences in the sensitivities of 
the silicon detectors above 1000 nm. However, that is not a problem 
with di-PLS as it captured the major source of useful variability and in 
the present case the NIR part that correlated most with the DM. Even 
though the variability in DM was similar for both instruments, appli
cation of a 3 LVs PLS regression model established on instrument 1 
showed poor predictive performance (RMSEP = 2.98 % and R2

p = 0.28) 
on the data collected with instrument 2. The bias obtained with the 
standard PLS was 0.4 %. On the other hand, di-PLS regression with the 
same number of LVs successfully recovered the functional relationship 
between NIR spectra and DM and improved the R2 and RMSEP and to 
0.85 and 1.61 %, respectively while increasing the bias. The improve
ments can be mostly attributed to the alignment of the (marginal) dis
tributions of the domain-specific samples in the LVs space (see Fig. 5A 
and 5E) . 

Temperature correction case for mango fruit data 
For the sensor temperature correction experiment in the case of 

mango fruit samples, where calibration and test sets were recorded 
at ~ 15 and ~ 25 ◦C, respectively, the similarity between the source and 
target domains in terms of the NIR spectra was comparably high 
(Fig. 2A). Consequently, the PLS regression (baseline to di-PLS regres
sion) yielded good prediction results for DM based on the data acquired 

Table 1 
Summary of data sets used for comparing the predictive performance of partial least-squares (PLS) and domain invariant partial least-squares (di-PLS).  

Dataset Spectral range (nm) Source (Samples × Wavelengths) Target 
(Samples × Wavelengths) 

Reference 
measurement 

Olive instrument transfer (Sun et al. 2020) 705–1115 186 × 135 96 × 135 
(New instrument) 

Dry matter (%) 

Mango temperature correction [18] 705–1128 1003 × 142 996 × 142 
(Different temperature) 

Dry matter (%) 

Mango season correction [18] 705–1115 455 × 135 483 × 135 
(New season) 

Dry matter (%) 

Apple season correction [17] 729–975 1219 × 83 1007 × 83 
(New season) 

Dry matter (%)  

Fig. 1. Olive calibration transfer case. (A) Spectra from instrument 1 (blue) and instrument 2 (orange), (B) histograms explaining the distribution of the reference dry 
matter for samples measured on different instruments (Y1 for instrument 1 and Y2 for instrument 2), (C) testing the PLS regression calibration made on instrument 1 
on instrument 2, and (D) testing the di-PLS regression calibration made on instrument 1 on instrument 2. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

P. Mishra and R. Nikzad-Langerodi                                                                                                                                                                                                        



Infrared Physics and Technology 111 (2020) 103547

4

at the higher sensor temperature (Fig. 2C). However, application of di- 
PLS regression further improved the accuracy. The RMSEP improved 
from 1.31 % to 1.16 %, and the prediction bias was reduced from − 0.50 
% to − 0.23 % compared to the baseline PLS model. 

Season effect correction for mango and apple data 
For the experiments involving seasonal effects correction on the NIR 

spectra of mango and apple, it was found that adapting the corre
sponding calibration models by means of di-PLS regression yielded 
significant improvements in terms of the RMSEP (Figs. 3 and 4). For the 
former, the RMSEP improved from 2.57 % (PLS) to 1.66 % di-PLS). 
However, it was found that the di-PLS regression model systematically 
underestimated the DM which can be explained by the fact that the 
average DM of the 2019 sample is slightly higher compared to the 2016 
sample (Fig. 3B) for which the reference values are included when fitting 
the model. This is because di-PLS regression assumes that the distribu
tion of the response y is similar in the source and target domains, which 
is an important limitation of the method. di-PLS also reduced the pre
diction bias from − 1.91 % to 1.10 % for the mango season correction 
data set (Fig. 3). Finally, for correcting the seasonal variability between 
apples harvested in 2015 and 2016, di-PLS regression increased the 
model accuracy on the target domain samples (Fig. 4). In particular, di- 
PLS improved the RMSEP from 0.76 % to 0.56 % and the prediction bias 
from 0.46 % to 0.09 %. A complete summary of improvement in model 
accuracies for all data sets can be found in Table 2. In all the cases, di- 
PLS regression outperformed standard PLS regression in terms of 
higher prediction R2 and lower RMSEP. 

Comparison of PLS and di-PLS based on scores and regression vectors 
Fig. 5 shows the projections of the 4 data sets on the first 2 LVs of the 

corresponding PLS regression and di-PLS regression models. As ex
pected, the distributions of source and target domain differ the most for 
the olive instrument transfer experiment, where the differences in the 

NIR spectra were most pronounced. Whereas, di-PLS regression suc
cessfully aligns the two distributions, which explains the notable in
crease in prediction accuracy over the PLS regression model tested on 
the samples recorded on instrument 2 (Fig. 1). In contrast, the distri
butional differences are more subtle for the temperature and seasonal 
change experiments, where standard PLS regression models generalized 
reasonably well on the target domain samples. For the mango season 
experiment, alignment of the distributions is not optimal as can be seen 
from the change of structure of the target domain samples (Fig. 5C and 
5G). In particular, the two clusters of the target domain data (orange) 
seen in Fig. 5C indicates a bi-modal distribution of the spectra which 
disappears after domain regularization. 

The regression vectors from PLS regression and di-PLS regression for 
all four data sets are shown in Fig. 6. The overall shape of the regression 
vectors (PLS regression and di-PLS regression) was similar (with the 
major peaks related to moisture). However, notable differences between 
the regression vectors of PLS regression and di-PLS regression are the 
higher weights and well resolved peaks in the regression vector of di- 
PLS. The regression vector of di-PLS regression has higher weights at 
the similar spectral regions where the PLS regression vector showed 
significant peaks but with relatively less weights. In addition, there were 
some spectral regions where the peaks get well resolved with the di-PLS 
regression; for instance, around 850 nm in the olive data set (Fig. 6A), 
around 800 nm in mango temperature correction data set (Fig. 6B), 
around 800 nm and 950 nm in mango season correction data set, around 
920 nm in apple season correction dataset. Such resolved peaks and 
higher regression weights at important wavelengths obtained by di-PLS 
regression compared to the PLS regression could be the reason for better 
performance of the di-PLS regression over the PLS regression for dealing 
with crucial and practically relevant tasks such as instrument transfer, 
temperature correction and seasons effects correction. 

Fig. 2. Mango temperature correction case. (A) Spectra from 15 ◦C (blue) and 25 ◦C (orange), (B) histograms explaining the distribution of the reference dry matter 
for samples measured at different temperatures (Y1 for 15 ◦C and Y2 for 25 ◦C), (C) testing the PLS regression calibration made on data from 15 ◦C and tested on data 
from 25 ◦C, and (D) testing the di-PLS regression calibration made on data from 15 ◦C and tested on data from 25 ◦C. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.).

Fig. 3. Mangoes seasonal effects correction case. (A) Spectra from year 2016 (blue) and year 2019 (orange), (B) histograms explaining the distribution of the 
reference dry matter for samples measured at different seasons (Y1 for year 2016 and Y2 for year 2019), (C) testing the PLS regression calibration made on data from 
year 2016 and tested on data from year 2019, and (D) testing the di-PLS regression calibration made on data from year 2016 and tested on data from year 2019. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Compared to the original studies related to the data sets used in this 
work, the di-PLS regression in the case of instrument transfer for olive 
fruit allows standard free calibration transfer which in the original study 
[19] was performed by performing extra measurements in the new in
strument. Thus, it has demonstrated that with the application of di-PLS 
regression the new measurements may not be necessary. In the case of 
the mango temperature correction data set [19], the original work stated 
the best R2

p = 0.82 obtained with the PLS regression, however, the di- 

PLS obtained a R2
p = 0.9 with a similar error value. For the multi- 

season data set of mangoes [18] and apple [17], the di-PLS model per
formed similarly to the results presented in the original published 
studies. However, unlike those studies where calibration models were 
developed with the data of samples from all seasons, the di-PLS cali
bration model developed here used data of samples from one season and 
tested on data from a different season. Hence, the di-PLS model devel
oped in this study can be considered more legitimate. 

6. Conclusions 

Failure of NIR models has been a long-existing problem in the 
domain of fresh fruit quality analysis. The PLS regression models 
developed for fruit quality analysis usually work well within the domain 
in which they were calibrated but fails when tested on a new domain 
corresponding to measurements from a different instrument, sensor 
operating temperatures and seasons. In this study, di-PLS regression has 
been proposed for modelling the NIR spectra of fresh fruit to deal with 
NIR model failure. In all the four cases presented related to instrument 
transfer/ temperature correction/ season effect correction, the di-PLS 
regression model showed superiority to the standard PLS regression 
modelling commonly performed in the NIR domain. The improvements 
were noticed as di-PLS regression was able to extract the generalized 
latent variables from multiple batches corresponding to a different 

Fig. 4. Apples seasonal effects correction case. (A) Spectra from year 2015 (blue) and year 2016 (orange), (B) histograms explaining the distribution of the reference 
dry matter for samples measured at different seasons (Y1 for year 2015 and Y2 for year 2016), (C) testing the PLS regression calibration made on data from year 2015 
and tested on data from year 2016, and (D) testing the di-PLS regression calibration made on data from year 2015 and tested on data from year 2016. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

Table 2 
Summary of improvements in model accuracies with the use of di-PLS regression 
compared to standard PLS regression.  

Dataset % increase in R2 

with di-PLS 
regression 

% decrease in 
RMSEP with di- 
PLS regression 

% decrease in Bias 
with di-PLS 
regression 

Olive instrument 
transfer 

67 46 No improvement 

Mango 
temperature 
correction 

1 11 54 

Mango season 
correction 

10 35 42 

Apple season 
correction 

1 26 80  

Fig. 5. Latent space representations. Projections of source and target domain samples onto the first 2 LVs of PLS regression (top row) and di-PLS regression (bottom 
row) models. Ellipses denote 95 % confidence intervals. PLS regression: LV1 vs LV2 (A) olive data set, (B) mango temperature data set, (C) mango season data set, and 
(D) apple season data set. di-PLS regression:LV1 vs LV2 (E) olive data set, (F) mango temperature data set, (G) mango season data set, and (H) apple season data set. 
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instrument, temperature condition and season. In summary, advanced 
methods like di-PLS regression can facilitate the development of 
generalized fruit quality models, which work well on multiple in
struments, temperature conditions and multi-season experiments. 
Domain regularization-based methods such as di-PLS regression can 
support in making NIR spectroscopy models scalable and widely appli
cable. However, a limitation of the di-PLS method is that it requires the 
distribution of response variables from two conditions to be similar. In 
addition, compared to standard PLS regression, domain invariant 
learning requires several parameters to be optimized. 
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