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NK cell expansion is still mainly a hospital technology and not industrial
but it is gaining importance.

To increase in scale and patient availability NK cell expansion has to be
technologized and engineered just like regular CHO cell culture.

Our research approaches use systematic engineering and state-of-the-
art analytical tools to characterize NK cell expansion therefore improve in
yield and enable more robust processes. That results in a better product
and eventually lower production costs therefore a higher revenue.
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Main research directions

[ Cell expansion in
bioreactors]

control

Focus on process parameters and
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[ Raw material
characterization]

Focus on raw material’s variability
and their influence on culture
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Our hypothesis: the expansion process through process parameters has to adapt
to the high raw material variability, such as different donors or serum batches.

However, to optimize the relevant process parameters the effect of different raw
materials on the expansion process itself has to be understood first.

Metabolic profiles of the expansion process correlated with culture
4 parameters show the important factors for cultivation performance.

. %+ Optimal and cost effective feeding strategies can be set up by the analysis
*o“#9% of amino acid consumption and the monitoring of interleukin
concentration.

Media complexity could be reduced based on the metabolic profiles
A allowing tighter process control and consistent product quality.
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Our hypothesis: NK cells should be cultured in a well-controlled bioreactor
environment.

These cultures can achieve similar expansion levels to current clinical practice or

even higher if the culturing process is adjusted to accommodate raw material
variabilities. Which is possible in bioreactors.

ZA . |Inbioreactors, consistent expansion can be achieved due to high level of
Q_w process parameter control.

Culture conditions such as temperature, dissolved oxygen, carbon
dioxide, pH, etc. can be optimized to different raw material variabilities.

= Balanced dynamic/static culturing conditions can provide the necessary
ey stimulation that is optimal to lymphocytes.
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We need process
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|dentify
metabolic
patterns
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|dentify mechanistic
links inherent to
lymphocyte expansion
and develop robust
digital twins
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Experimental objectives and methods (@»

Cells (Apheresis/Line)
Mixture, UCB possible
1 x 108 seed; USD 500 cryo

Cell line NK-92

Itis a well
known natural
w _ Kkiller cell line,
/" already tested
=" clinically and

successfuly
used for CAR
development
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A Serum (Animal/Human)
Reduce!

= Brand specialized medium

Test and reduce!

Cytokines [IL2; IL15; IL17; 1L21..]

IL2 & IL15

Activators [Anti-CD]

Avoid

Feeder cells
(/
Avoid

GO
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Experimental objectives and methods

Objectives
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Methods

|dentify optimal culturing conditions in a
dynamic system and under hypoxic conditions

r——=—/"

Evaluate the effects of scaling up in the
context of costs reduction

Test the effects of different serum
concentrations on growth and functionality

Generate a metabolic palette that enables
correlations with proliferation and function

ldentify promising metabolites for further

development of soft sensors
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T25 —T-75 flasks 125 - 250ml shaker flasks

VCC, TCC, viability, aggregation rate and the
average cell diameter were measured with a
Cedex HiRes device and trypan blue staining

Enzymatic photometric assay for Glucose,
Lactate, Acetate, Ammonia, Glutamine and
Glutamate were performed on a Cedex BioHT
device.

LDH release based method was used for
measuring cytotoxicity; K-562 cells were used
as target.

Amino acid concentrations were determined

with an Agilent Eclipse AAA 3,5 um 3x150 mm

column using an in-needle derivatization

method 16
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A series of cultures performed under different dynamic, medium and serum conditions
allowed us to develop a palette of growth, functionality, viability and size behaviors
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Effect of Serum and Shear on
Metabolism and Functionality
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The concentration of serum affects both growth and cytotoxicity.
Shear affects the proliferation of the NK cells, but it has little effect on functionality.
Combining these two effects can induce a desired behavior.
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Effect of Serum:
Differences in amino acid uptake
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The total uptake of amino acids also exhibit differences
that can be related to the cytotoxicity of the cultured cells.
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s Differences in amino acid uptake =l
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The total uptake of asparagine, serine, threonine, tyrosine, isoleucine, leucine and lysine are
probable good predictors for functionality
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Two cultures exhibiting similar growth patterns but different functional profiles and also
differences in the overall consumption of glucose, glutamine and glutamate.
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the metabolite of interest = Yields. Acetate and Glutamine can be clear markers of differences in functionality.
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Combining Medium Change and Shear:
Analysis of Specific Metabolic Rates
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80 rpm + 20% serum Vs. Static + 10% serum
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Analysis of growth, uptake and production rates: Almost every metabolite is found to have a very
specific profile depending of the process parameters
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Hypoxia can also be used as a process parameter to induce specific growth/functional behaviors.
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The pattern of amino acid uptake pattern is different from the one induced by different serum concentrations.
Hypoxia may have a independent effect on cell cytotoxicity.
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[ Cell expansion in
bioreactors]

Focus on process parameters and
control

[ NK cell growth
modeling]

[ Raw material
characterization]
Focus on expansion kinetics

and point of harvest
determination

Focus on raw material’s variability
and their influence on culture

[ On-line process -
monitoring and control ]

Focus on PAT solution
development
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Our hypothesis: the on-line monitoring and control of the expansion process in
bioreactors allow to control the cell proliferation according to the cells’ needs
providing more successful batches with consistent product quality.

Developing such control techniques requires the combination of bioengineering
and data science approaches.

invasive but relevant to CQAs.

On-line sensors would help to determine the optimal point of harvest
% M and assure the highest possible expansion fold.

On-line data can be used to generate a process “fingerprint” that can be
used for batch-to-batch comparison.

Q Arsenal of different bioreactor sensors can measure CPPs on-line, non-

)

20
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Our hypothesis: a process model based approach for process optimization can

bring in shorter time the desired robust and stable expansion process with higher
folds.

Mechanistic understanding of the expansion process helps to set up targeted
experiments on relevant process parameters.

R A model on the basis of cell metabolism would be beneficially used for
Q4 improvements in expansion kinetics and process control.

A digital twin of the expansion process that is based on cell growth could
help in the tighter control of process parameters.

(| Model could be used to adjust the process parameters according to raw
Eg material variability.

21



Research rationale: methodological approach
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« We achieve process understanding of NK expansion processes by using
our established bioprocess technological methods.
« Dynamic culture conditions can be beneficial for culturing the NK-92 cell line.

« Uptake and production rates show different patterns during culture and relate to
the functionality of the cells.

« Combining oxygen concentration, shear stress and serum supplementation can
be used to decouple functionality and metabolism.

* Process Understanding is of central importance for developing
mechanistic models able to integrate functionality and growth and control
despite raw material variability.

* Next steps: dynamic bioreactor systems; PAT, digital twins!
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